On an Inequality for Legendre Polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Conjectured Inequality for a Sum of Legendre Polynomials

∗This work was financially supported by the Austrian Science Foundation (FWF) grant SFB F013 and the Christian Doppler Research Association (CDG). S. Gerhold gratefully acknowledges a fruitful collaboration and continued support by the Austrian Federal Financing Agency and Bank Austria through CDG. M. Kauers was supported by the Austrian Science Foundation FWF under SFB F013 grant number F1305 ...

متن کامل

On Polar Legendre Polynomials

We introduce a new class of polynomials {Pn}, that we call polar Legendre polynomials, they appear as solutions of an inverse Gauss problem of equilibrium position of a field of forces with n + 1 unit masses. We study algebraic, differential and asymptotic properties of this class of polynomials, that are simultaneously orthogonal with respect to a differential operator and a discrete-continuou...

متن کامل

Wavelets Based on Legendre Polynomials

We construct an orthogonal wavelet basis for the interval using a linear combination of Legendre polynomial functions. The coefficients are taken as appropriate roots of Chebyshev polynomials of the second kind, as has been proposed in reference [1]. A multi-resolution analysis is implemented and illustrated with analytical data and real-life signals from turbulent flow fields.

متن کامل

An inequality for chromatic polynomials

Woodall, D.R., An inequality for chromatic polynomials, Discrete Mathematics 101 (1992) 327-331. It is proved that if P(G, t) is the chromatic polynomial of a simple graph G with II vertices, m edges, c components and b blocks, and if t S 1, then IP(G, t)/ 2 1t’(t l)hl(l + ys + ys2+ . + yF’ +spl), where y = m n + c, p = n c b and s = 1 t. Equality holds for several classes of graphs with few ci...

متن کامل

An inequality for Tutte polynomials

Let G be a graph without loops or bridges and a, b be positive real numbers with b ≥ a(a + 2). We show that the Tutte polynomial of G satisfies the inequality TG(b, 0)TG(0, b) ≥ TG(a, a). Our result was inspired by a conjecture of Merino and Welsh that TG(1, 1) ≤ max{TG(2, 0), TG(0, 2)}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2020

ISSN: 2227-7390

DOI: 10.3390/math8112044